4.5 Article

Evidence of influence of genomic DNA sequence on human X chromosome inactivation

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 2, 期 9, 页码 979-988

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.0020113

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM073120, GM45441, GM73120] Funding Source: Medline

向作者/读者索取更多资源

A significant number of human X-linked genes escape X chromosome inactivation and are thus expressed from both the active and inactive X chromosomes. The basis for escape from inactivation and the potential role of the X chromosome primary DNA sequence in determining a gene's X inactivation status is unclear. Using a combination of the X chromosome sequence and a comprehensive X inactivation profile of more than 600 genes, two independent yet complementary approaches were used to systematically investigate the relationship between X inactivation and DNA sequence features. First, statistical analyses revealed that a number of repeat features, including long interspersed nuclear element (LINE) and mammalian-wide interspersed repeat repetitive elements, are significantly enriched in regions surrounding transcription start sites of genes that are subject to inactivation, while Alu repetitive elements and short motifs containing ACG/CGT are significantly enriched in those that escape inactivation. Second, linear support vector machine classifiers constructed using primary DNA sequence features were used to correctly predict the X inactivation status for > 80% of all X-linked genes. We further identified a small set of features that are important for accurate classification, among which LINE-1 and LINE-2 content show the greatest individual discriminatory power. Finally, as few as 12 features can be used for accurate support vector machine classification. Taken together, these results suggest that features of the underlying primary DNA sequence of the human X chromosome may influence the spreading and/or maintenance of X inactivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据