4.5 Article

Reliability optimization using probabilistic sufficiency factor and correction response surface

期刊

ENGINEERING OPTIMIZATION
卷 38, 期 6, 页码 671-685

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/03052150600711190

关键词

multi-fidelity analysis; reliability; optimization; probabilistic sufficiency factor; correction response surface

向作者/读者索取更多资源

Reliability-based design optimization for low failure probability often requires millions of function analyses. Response surface approximation of the response functions (analysis response surface(ARS)) is often used to reduce the cost of failure probability calculations. Failure probabilities obtained from numerical sampling schemes are noisy and unsuitable for gradient-based optimization. To overcome this, response surfaces have been fitted to the failure probability of the designs (design response surface (DRS)) as a function of the design variables and used in optimization. Two shortcomings of the approach are that (i) the ARS fitting is extremely expensive for a large number of variables, especially for the high accuracy required to obtain very accurate reliability estimates, and (ii) DRS introduces fitting errors which affect the tails of the distributions which are significant for low failure probabilities. An approach to obtaining high-accuracy reliability estimates using the probabilistic sufficiency factor and correction response surface is investigated in this article. The method is demonstrated using a thin-walled box beam structure designed for minimum weight with failure probability constraints. The design is subjected to buckling, strength, and displacement constraints. Two methods of correcting low-fidelity analyses are compared for accuracy and efficiency. It is shown that correction to the response function is more accurate than the correction fitted to the probabilistic sufficiency factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据