4.5 Article

Detecting conserved interaction patterns in biological networks

期刊

JOURNAL OF COMPUTATIONAL BIOLOGY
卷 13, 期 7, 页码 1299-1322

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/cmb.2006.13.1299

关键词

graph mining; frequent subgraph discovery; evolution; modular conservation

向作者/读者索取更多资源

Molecular interaction data plays an important role in understanding biological processes at a modular level by providing a framework for understanding cellular organization, functional hierarchy, and evolutionary conservation. As the quality and quantity of network and interaction data increases rapidly, the problem of effectively analyzing this data becomes significant. Graph theoretic formalisms, commonly used for these analysis tasks, often lead to computationally hard problems due to their relation to subgraph isomorphism. This paper presents an innovative new algorithm, MULE, for detecting frequently occurring patterns and modules in biological networks. Using an innovative graph simplification technique based on ortholog contraction, which is ideally suited to biological networks, our algorithm renders these problems computationally tractable and scalable to large numbers of networks. We show, experimentally, that our algorithm can extract frequently occurring patterns in metabolic pathways and protein interaction networks from the KEGG, DIP, and BIND databases within seconds. When compared to existing approaches, our graph simplification technique can be viewed either as a pruning heuristic, or a closely related, but computationally simpler task. When used as a pruning heuristic, we show that our technique reduces effective graph sizes significantly, accelerating existing techniques by several orders of magnitude! Indeed, for most of the test cases, existing techniques could not even be applied without our pruning step. When used as a stand-alone analysis technique, MULE is shown to convey significant biological insights at near-interactive rates. The software, sample input graphs, and detailed results for comprehensive analysis of nine eukaryotic PPI networks are available at www.cs.purdue.edu/homes/koyuturk/mule.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据