4.4 Article

Light-driven water splitting for (bio-)hydrogen production:: photosystern 2 as the central part of a bioelectrochemical device

期刊

PHOTOCHEMISTRY AND PHOTOBIOLOGY
卷 82, 期 5, 页码 1385-1390

出版社

WILEY
DOI: 10.1562/2006-07-14-RC-969

关键词

-

向作者/读者索取更多资源

To establish a semiartificial device for (bio-)hydrogen production utilizing photosynthetic water oxidation, we report on the immobilization of a Photosystem 2 on electrode surfaces. For this purpose, an isolated Photosystem 2 with a genetically introduced His tag from the cyanobacterium Thermosynechococcus elongatus was attached onto gold electrodes modified with thiolates bearing terminal Ni(II)-nitrilotriacetic acid groups. Surface enhanced infrared absorption spectroscopy showed the binding kinetics of Photosystem 2, whereas surface plasmon resonance measurements allowed the amount of protein adsorbed to be quantified. On the basis of these data, the 2 surface coverage was calculated to be 0.29 pmol protein cm(-2), which is in agreement with the formation of a monomolecular film on the electrode surface. Upon illumination, the generation of a photocurrent was observed with current densities of up to 14 mu A cm(-2). This photocurrent is clearly dependent on light quality showing an action spectrum similar to an isolated Photosystem 2. The achieved current densities are equivalent to the highest reported oxygen evolution activities in solution under comparable conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据