4.6 Article

Spin current and shot noise from a quantum dot coupled to a quantized cavity field

期刊

PHYSICAL REVIEW B
卷 74, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.115327

关键词

-

向作者/读者索取更多资源

We examine the spin current and the associated shot noise generated in a quantum dot connected to normal leads with zero bias voltage across the dot. The spin current is generated by spin flip transitions induced by a quantized electromagnetic field inside a cavity with one of the Zeeman states lying below the Fermi level of the leads and the other above. In the limit of strong Coulomb blockade, this model is analogous to the Jaynes-Cummings model in quantum optics. We also calculate the photon current and photon current shot noise resulting from photons leaking out of the cavity. We show that the photon current is equal to the spin current and that the spin current can be significantly larger than for the case of a classical driving field as a result of cavity losses. In addition to this, the frequency-dependent spin (photon) current shot noise show dips (peaks) that are a result of the discrete nature of photons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据