4.5 Article

Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmgm.2005.10.012

关键词

anthraquinone dyes; supercritical carbon dioxide; WNN

向作者/读者索取更多资源

A wavelet neural network (WNN) model in quantitative structure property relationship (QSPR) was developed for predicting solubility of 25 anthraquinone dyes in supercritical carbon dioxide over a wide range of pressures (70-770 bar) and temperatures (291-423 K). A large number of descriptors were calculated with Dragon software and a subset of calculated descriptors was selected from 18 classes of Dragon descriptors with a stepwise multiple linear regression (MLR) as a feature selection! technique. Six calculated and two experimental descriptors, pressure and temperature, were selected as the most feasible descriptors. The selected descriptors were used as input nodes in a wavelet neural network (WNN) model. The wavelet neural network architecture and its parameters were optimized simultaneously. The data was randomly divided to the training, prediction and validation sets. The predictive ability of the model was evaluated using validation data set. The root mean squares error (RMSE) and mean absolute errors were 0.339 and 0.221, respectively, for the validation data set. The performance of the WNN model was also compared with artificial neural network (ANN) model and the results showed the superiority of the WNN over ANN model. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据