4.3 Article

Homogenization of a Darcy-Stokes system modeling vuggy porous media

期刊

COMPUTATIONAL GEOSCIENCES
卷 10, 期 3, 页码 291-302

出版社

SPRINGER
DOI: 10.1007/s10596-006-9024-8

关键词

Beavers-Joseph boundary condition; Darcy-Stokes system; homogenization; two-scale convergence; vuggy porous media

向作者/读者索取更多资源

We derive a macroscopic model for single-phase, incompressible, viscous fluid flow in a porous medium with small cavities called vugs. We model the vuggy medium on the microscopic scale using Stokes equations within the vugular inclusions, Darcy's law within the porous rock, and a Beavers-Joseph-Saffman boundary condition on the interface between the two regions. We assume periodicity of the medium and obtain uniform energy estimates independent of the period. Through a two-scale homogenization limit as the period tends to zero, we obtain a macroscopic Darcy's law governing the medium on larger scales. We also develop some needed generalizations of the two-scale convergence theory needed for our bimodal medium, including a two-scale convergence result on the Darcy-Stokes interface. The macroscopic Darcy permeability is computable from the solution of a cell problem. An analytic solution to this problem in a simple geometry suggests that: (1) flow along vug channels is primarily Poiseuille with a small perturbation related to the Beavers-Joseph slip, and (2) flow that alternates from vug to matrix behaves as if the vugs have infinite permeability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据