4.7 Article Proceedings Paper

Finite element modelling of impact on preloaded composite panels

期刊

COMPOSITE STRUCTURES
卷 75, 期 1-4, 页码 501-513

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2006.04.056

关键词

impact; polymer matrix composites; tensile preload; finite element modelling; damage

向作者/读者索取更多资源

Composite aircraft structures are susceptible to impact damage during manufacture, maintenance and in-flight. Low energy impact damage is often internal and invisible, but can significantly reduce the stiffness and strength or cause catastrophic failure when the structure is under load during the impact event. This paper describes the development and application of an explicit finite element (FE) model, incorporating a bi-phase material degradation model, to predict the behaviour of loaded carbon/epoxy panels when impacted over a range of low energy levels. Overall, the trends predicted in the FE simulations were consistent with experimental data, although quantitatively the FE results were generally conservative. However, the model greatly underestimated the catastrophic failure boundary. The model was used to investigate the effect of various parameters including magnitude of preload, impact velocity and specimen geometry on the amount of damage and the residual strength of carbon/epoxy panels. (C) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据