4.5 Article Proceedings Paper

A developmental role for ataxia-telangiectasia mutated in protecting the embryo from spontaneous and phenytoin-enhanced embryopathies in culture

期刊

TOXICOLOGICAL SCIENCES
卷 93, 期 1, 页码 156-163

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfl045

关键词

Atm; ataxia-telangiectasia; oxidative stress; reactive oxygen species; phenytoin; development; embryopathy; developmental toxicology

向作者/读者索取更多资源

Ataxia-telangiectasia (A-T) is characterized by impaired recognition and repair of DNA damage and increased sensitivity to ionizing radiation (IR), cancer, and neurodegeneration. We previously showed pregnant knockout mice lacking the A-T gene product ataxia-telangiectasia mutated (Atm) are highly susceptible to the embryopathic effects of IR, which damages DNA, possibly via generation of reactive oxygen species (ROS). Here we show that Atm more broadly protects against both spontaneous and phenytoin-enhanced embryopathies. In the absence of drug exposure, cultured embryos from pregnant Arm knockout mice showed more embryopathies than wild-type littermates, with a gene dose-dependent decrease in susceptibility from -/- to +/- to +/+ embryos (p < 0.05). A similar but significantly enhanced gene dose-dependent pattern of embryopathic susceptibility was evident in Atm knockout embryos exposed to the ROS-initiating teratogen phenytoin (p < 0.05). These results provide the first evidence that Atm has a broad developmental importance beyond IR embryopathies, possibly by protecting the embryo from constitutive and xenobiotic-enhanced oxidative stress, with even heterozygotes showing increased risk. This developmental role of Atm further implicates DNA damage in ROS-mediated teratogenesis and DNA damage response and repair as risk factors for individual susceptibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据