4.8 Article

The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0606026103

关键词

iraP; magnesium; Escherichia coli

资金

  1. Intramural NIH HHS Funding Source: Medline
  2. NIAID NIH HHS [R01 AI049561, AI49561] Funding Source: Medline

向作者/读者索取更多资源

The sigma factor RpoS regulates the expression of many stress response genes and is required for virulence in several bacterial species. We now report that RpoS accumulates when Salmonella enterica serovar Typhimurium is growing logarithmically in media with low Mg2+ concentrations. This process requires the two-component regulatory system PhoP/PhoQ, which is specifically activated in low Mg2+. We show that PhoP controls RpoS protein turnover by serving as a transcriptional activator of the iraP (yaiB) gene, which encodes a product that enhances RpoS stability by interacting with RssB, the protein that normally delivers RpoS to the ClpXP protease for degradation. Mutation of the phoP gene rendered Salmonella as sensitive to hydrogen peroxide as an rpoS mutant after growth in low Mg2+. In Escherichia coli, low Mg2+ leads to only modest RpoS stabilization, and iraP is not regulated by PhoP/PhoQ. These findings add the sigma factor RpoS to the regulatory proteins and two-component systems that are elevated in a PhoP/PhoQ-dependent fashion when Salmonella face low Mg2+ environments. Our data also exemplify the critical differences in regulatory circuits that exist between the closely related enteric bacteria Salmonella and E. coli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据