4.8 Article

Synthesis and characterization of poly(ethylene glycol)-based single-ion conductors

期刊

CHEMISTRY OF MATERIALS
卷 18, 期 18, 页码 4288-4295

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm0603699

关键词

-

向作者/读者索取更多资源

A series of ionomers was synthesized by melt polycondensation of poly( ethylene glycol) ( PEG) oligomers and dimethyl 5-sulfoisophthalate sodium salt. The molar mass of the PEG spacer was either 400, 600, or 900, and the cation was exchanged from sodium to lithium or cesium by dialysis. Since the anions are covalently attached to the ionomer chains and are essentially immobile relative to the cations, these ionomers are excellent models for polymeric single-ion electrolytes. The experimental evidence to date suggests that the cations do not aggregate to form the usual ion clusters seen in other ionomers. No relaxation time associated with ion clusters was observed in rheological measurements, nor was an ionomer peak observed in small-angle X-ray scattering measurements. The ionic conductivity increases significantly with increasing PEG spacer molecular weight, although the total cation content decreases at the same time. At room temperature, the highest conductivity (10(-6) S/cm) was achieved for the sodium ionomer with PEG spacer M-n = 900, similar to other single-ion polymer electrolytes. The various ionomers, although with significantly different cation type and concentration, have almost the same ionic conductivity at the same temperature interval from the corresponding glass transition temperature. This strongly supports that ion migration in these ionomers is closely correlated with the segmental mobility of the polymer matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据