4.7 Article

Influence of the light source on the low-irradiance performance of Cu(In,Ga)Se2 solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 90, 期 14, 页码 2141-2149

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2005.01.022

关键词

indoor application; Cu(In; Ga)Se-2; light source

向作者/读者索取更多资源

Illumination intensities in indoor environments are usually given in terms of lux, a unit of measurement which only takes into account the spectral distribution of the light source in the sensitivity range of the human eye (380-780nm). At a given level of illuminance, however, the performance of a solar cell will strongly depend on the spectral distribution of the incoming light and on its spectral response. This work considers the spectral distribution of some typical light Sources encountered in indoor environments (natural daylight/AM 1.5, fluorescent tube, halogen lamp with and without cold reflector, and the common incandescent lamp) and calculates the actual amount of light available to a generic solar cell. We then calculate the performance for different indoor illumination levels and spectra of a Cu(In,Ga)Se-2 solar cell especially optimised for low-irradiance conditions. Considering as a reference the performance of the cell under a AM 1.5 spectrum at a given level of illuminance, we can expect the performance of the cell to be reduced by a factor 3 and 2, respectively, when using a fluorescent tube and a halogen lamp with cold reflector as the light source, and to be increased by a factor 2 to 3 if the cell is operated under a halogen/incandescent lamp. (c) 2006 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据