4.8 Article

Mechanistic studies and methods to prevent aglycon transfer of thioglycosides

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 35, 页码 11612-11619

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja063247q

关键词

-

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

Thioglycosides have been employed extensively for the synthesis of complex oligosaccharides, carbohydrate libraries, and mimetics of O-glycosides. While very useful, aglycon transfer is a problematic side reaction with thioglycosides. In this paper, a series of mechanistic studies are described. The aglycon transfer process is shown to affect both armed and disarmed thioglycosides, cause anomerization of the carbon-sulfur bond of a thioglycoside, and destroy the product of a glycosylation reaction. The results indicate that the aglycon transfer process can be a major problem for a wide range of thioglycosides. This side reaction is especially important to consider when carrying out complex reactions such as solid-phase glycosylations, one-pot or orthogonal multicomponent glycosylations, and construction of carbohydrate libraries. To prevent transfer, a number of modified aglycons were examined. The 2,6-dimethylphenyl ( DMP) aglycon was found to effectively block transfer in a variety of model studies and glycosylation reactions. The DMP group can be installed in one step from a commercially available thiol ( 2,6-dimethylthiophenol) and is useable as a glycosyl donor. On the basis of these features, the DMP group is proposed as a convenient and improved aglycon for thioglycosides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据