4.8 Article

Reversible switching of microtubule motility using thermoresponsive polymer surfaces

向作者/读者索取更多资源

We report a novel approach for the dynamic control of gliding microtubule motility by external stimuli. Our approach is based on the fabrication of a composite surface where functional kinesin motor-molecules are adsorbed onto a silicon substrate between surface-grafted polymer chains of thermoresponsive poly( N-isopropylacrylamide). By external temperature control between 27 and 35 degrees C, we demonstrate the reversible landing, gliding, and releasing of motor-driven microtubules in response to conformational changes of the polymer chains. Our method represents a versatile means to control the activity of biomolecular motors, and other surface-coupled enzyme systems, in bionanotechnological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据