4.7 Article

Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 321, 期 1-2, 页码 143-154

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2006.05.007

关键词

polyethyleneimine (PEI); PLGA-PEG-PLGA; polyethylene glycol (PEG); phenyl(di)boronic acid (PDBA); salicyl hydroxamic acid (SHA); NGR peptide; dendritic cells; targeted delivery

资金

  1. NCI NIH HHS [5P30CA016672-29] Funding Source: Medline

向作者/读者索取更多资源

We have investigated the in vitro uptake, toxicity, phenotypic consequences and transfection efficiency of a stealth NGR/PEG/PDBA-coupled-SHA-PEI/pDNA targeting polyplex loaded with PLGA-PEG-PLGA tri-block copolymer in human monocyte-derived dendritic cells (DCs). Modification with PEG effectively shielded and reduced non-specific phagocytosis by immature DCs to approximately 20%. Coupling the NGR cell-specific peptide to the PEGylated polyplex (NGR/PEG/PDBA-SHA-PEI/pDNA) however resulted in specific and enhanced phagocytosis in DCs without any observable toxicity at the optimum concentration of 0.25% of the copolymer. DNase treatment had no effect on DNA integrity in the encapsulated polyplex. Confocal microscopy confirmed intracellular localization of the targeting NGR/PEG/PDBA-SHA-PEI/pDNA microparticles, resulting in more enhanced uptake of the radiolabeled plasmid DNA and approximately 5- and 10-fold increase over the control tri-block Pluronic F68 copolymer and the non-targeting polyplex, respectively. More importantly, phagocytosis of the targeting microparticles neither altered the functionality of immature DCs nor the phenotypic expression of DC-specific cell surface molecules, CD80, CD86, CD40 and CD54 (ICAM-1), suggesting that uptake of the targeting microparticles by themselves did not induce DC maturation. Taken together, these results suggest that PLGA-PEG-PLGA encapsulation of this stealth targeting polyplex has no negative effects on key properties of immature DCs and should pave the way for targeting DCs for vaccination purposes. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据