4.6 Article

MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 37, 页码 27145-27157

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602283200

关键词

-

资金

  1. NIGMS NIH HHS [5-F32-GM065736-02] Funding Source: Medline

向作者/读者索取更多资源

Ubiquitin (Ub)-fold proteins are rapidly emerging as an important class of eukaryotic modifiers, which often exert their influence by post-translational addition to other intracellular proteins. Despite assuming a common beta-grasp three-dimensional structure, their functions are highly diverse because of distinct surface features and targets and include tagging proteins for selective breakdown, nuclear import, autophagic recycling, vesicular trafficking, polarized morphogenesis, and the stress response. Here we describe a novel family of Membrane-anchored Ub-fold (MUB) proteins that are present in animals, filamentous fungi, and plants. Extending from the C terminus of the Ub-fold is typically a cysteine-containing CAAX (where A indicates aliphatic amino acid) sequence that can direct the attachment of either a 15-carbon farnesyl or a 20-carbon geranylgeranyl moiety in vitro. Modified forms of several MUBs were detected in transgenic Arabidopsis thaliana, suggesting that these MUBs are prenylated in vivo. Both cell fractionation and confocal microscopic analyses of Arabidopsis plants expressing GFP-MUB fusions showed that the modified forms are membrane-anchored with a significant enrichment on the plasma membrane. This plasma membrane location was blocked in vivo in prenyltransferase mutants and by mevinolin, which inhibits the synthesis of prenyl groups. In addition to the five MUBs with CAAX boxes, Arabidopsis has one MUB variant with a cysteine-rich C terminus distinct from the CAAX box that is also membrane-anchored, possibly through the attachment of a long chain acyl group. Although the physiological role(s) of MUBs remain unknown, the discovery of these prenylated forms further expands the diversity and potential functions of Ub-fold proteins in eukaryotic biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据