4.6 Article

Vascularized materials: Tree-shaped flow architectures matched canopy to canopy

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2349479

关键词

-

向作者/读者索取更多资源

In this paper we develop flow architectures for vascularizing smart materials that have self-healing capabilities. The flow architectures are configured as two trees matched canopy to canopy. A single stream flows through both trees and bathes every subvolume (crack site) of the material. Several types of tree-tree configurations are optimized. Trees that have only one level of branching and bathe a rectangular domain have optimal external shapes that are nearly square. They also have optimal ratios of channel sizes before and after branching. Trees optimized on square domains perform nearly as well as trees on freely morphing rectangular domains. The minimized global flow resistance decreases slowly as the number of subvolumes increases. It is more beneficial to bathe the entire volume with a single (optimized) one-stream architecture than to bathe it with several streams that serve small clusters of volume elements. These conclusions are reinforced by an analytical optimization of the same class of architectures in the limit of a large number of assembled subvolumes. We also show that the freedom to morph the design and to increase its performance can be enhanced by using tree-tree architectures with more than one level of branching. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据