4.6 Article

Structural basis for the redox control of plant glutamate cysteine ligase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 37, 页码 27557-27565

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602770200

关键词

-

向作者/读者索取更多资源

Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-angstrom resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据