4.7 Article

CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop

期刊

GENES & DEVELOPMENT
卷 20, 期 18, 页码 2552-2565

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.1463506

关键词

circadian clock; casein kinase I; knock-in; ChIP; DNA binding; degradation

资金

  1. NIGMS NIH HHS [GM062591, R01 GM068496, R01 GM062591, GM068496] Funding Source: Medline

向作者/读者索取更多资源

The eukaryotic circadian oscillators consist of circadian negative feedback loops. In Neurospora, it was proposed that the FREQUENCY (FRQ) protein promotes the phosphorylation of the WHITE COLLAR (WC) complex, thus inhibiting its activity. The kinase(s) involved in this process is not known. In this study, we show that the disruption of the interaction between FRQ and CK-1a (a casein kinase I homolog) results in the hypophosphorylation of FRQ, WC-1, and WC-2. In the ck-1a(L) strain, a knock-in mutant that carries a mutation equivalent to that of the Drosophila dbt(L) mutation, FRQ, WC-1, and WC-2 are hypophosphorylated. The mutant also exhibits similar to 32 h circadian rhythms due to the increase of FRQ stability and the significant delay of FRQ progressive phosphorylation. In addition, the levels of WC-1 and WC-2 are low in the ck-1a(L) strain, indicating that CK-1a is also important for the circadian positive feedback loops. In spite of its low accumulation in the ck-1a(L) strain, the hypophosphorylated WCC efficiently binds to the C-box within the frq promoter, presumably because it cannot be inactivated through FRQ-mediated phosphorylation. Furthermore, WC-1 and WC-2 are also hypophosphorylated in the cka(RIP) strain, which carries the disruption of the catalytic subunit of casein kinase II. In the cka(RIP) strain, WCC binding to the C-box is constantly high and cannot be inhibited by FRQ despite high FRQ levels, resulting in high levels of frq RNA. Together, these results suggest that CKI and CKII, in addition to being the FRQ kinases, mediate the FRQ-dependent phosphorylation of WCs, which inhibit their activity and close the circadian negative feedback loop.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据