4.5 Article

Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila:: responses to environmental variations in substrate concentrations and temperature

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 209, 期 18, 页码 3516-3528

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.02404

关键词

metabolism; stoichiometry; Riftia; hydrothermal vent; chemoautotrophy; symbiosis

类别

向作者/读者索取更多资源

The hydrothermal vent tubeworm Riftia pachyptila is a dominant member of many hydrothermal vent communities along the East Pacific rise and is one of the fastest growing metazoans known. Riftia flourish in diffuse hydrothermal fluid flows, an environment with high spatial and temporal heterogeneity in physical and chemical conditions. To date, physiological and biochemical studies of Riftia have focused on Riftia's adaptations to its chemoautotrophic bacterial symbionts. However the relation between in situ physico-chemical heterogeneity and Riftia host and symbiont metabolism, in particular symbiont chemoautotrophic function, remain poorly understood. Accordingly, we conducted experiments using shipboard high-pressure respirometers to ascertain the effect of varying substrate concentrations and temperature on Riftia metabolite uptake and symbiont carbon fixation. Our results show that substrate concentrations can strongly govern Riftia oxygen and sulfide uptake rates, as well as net carbon uptake (which is a proxy for chemoautotrophic primary production). However, after sufficient exposure to sulfide and oxygen, Riftia were capable of sustaining symbiont autotrophic function for several hours in seawater devoid of sulfide or oxygen, enabling the association to support symbiont metabolism through brief periods of substrate deficiency. Overall, temperature had the largest influence on Riftia metabolite uptake and symbiont autotrophic metabolism. In sum, while Riftia requires sufficient availability of substrates to support symbiont chemoautotrophic function, it is extremely well poised to buffer the temporal and spatial heterogeneity in environmental substrate concentrations, alleviating the influence of environmental heterogeneity on symbiont chemoautotrophic function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据