4.6 Article

Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipid membranes

期刊

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
卷 453, 期 2, 页码 224-236

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2006.07.004

关键词

rosemary; diterpenes; carnosic acid; carnosol; rosmarinic acid; phospholipid membranes; differential scanning calorimetry; P-31 nuclear magnetic resonance; X-ray diffraction; fluorescence polarization

向作者/读者索取更多资源

Rosemary (Rosmarinus officinalis) extracts are widely used in the food, nutraceutical and cosmetic areas. Their major bioactive components have shown antioxidant, antimicrobial, anti-inflammatory, antitumorigenic and chemopreventive activities. In this work, the bioactive compounds deriving from rosemary leaves (carnosol, CAR; carnosic acid, CA; rosmadial, RAL; genkwanin, GW; rosmarinic acid, RA) were isolated and their effects on the phase behaviour of model membranes were studied by several complementary biophysical techniques. All diterpenes studied, and specifically CAR, decreased the hydrophobic interactions between acyl chains, as well as broadened and shifted the phospholipid transition to lower temperatures into dimyristoylphosphatidylcholine (DMPC) membranes. In addition, all diterpenes and genkwanin increased the lipid order of fluid DMPC membranes, exhibiting CAR and RAL the strongest membrane-rigidifying effect. The diterpenoids, especially CA and RAL, promoted the formation of hexagonal-H-II phases at low temperatures in dielaidoylphosphatidylethanolamine (DEPE) membranes which exhibited a smaller tube-to-tube distance compared to pure phospholipid. These diterpenes were also able of promoting isotropic structures in DEPE membranes which consisted of non-periodically ordered lipid structures as demonstrated by X-ray diffraction. In contrast, minor effects were observed by rosmarinic acid. In conclusion, diterpenes and genkwanin from rosemary show membrane-rigidifying effects which may contribute to their antioxidant capacity through hindering diffusion of free radicals. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据