4.7 Article

Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part I. Model description and evaluation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 368, 期 2-3, 页码 823-838

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2006.03.023

关键词

pesticide soil residues; air-soil surface exchange; air concentrations; model evaluation

向作者/读者索取更多资源

Sources of pesticides in the atmosphere can be releases of new material through current use, or emission/reemission from soil residues resulting from historical use. It is the latter aspect, soil residues, that is the focus of this study. This paper describes the application of a simple coupled atmosphere-soil pesticide exchange model that can assist in the interpretation of soil residue and air concentration measurements, and in the projection of short period field measurements to larger spatial scales and longer time periods. Only dry gaseous exchange (emission and deposition) between bare agricultural lands and the atmosphere is modelled. Wet deposition and particle associated deposition of pesticide are not included. Model results are compared with published colocated air and soil pesticide concentration measurements made on agricultural lands in the southern U.S. that have soil residues of lindane and the following six highly persistent pesticides: cis-, trans-chlordane, p,p'-DDE, dieldrin, trans-nonachlor and toxaphene. The study results show: (i) that measured air concentrations of toxaphene and p,p'-DDE above agricultural soils in the southern U.S. can be attributed to emissions due to local soil residues of these pesticides rather than to the regional background air concentrations; (ii) that both soil emissions and background air concentrations of dieldrin contribute significantly to the measured air concentrations; (iii) that measured air concentrations of cis- and trans-chlordane as well as trans-nonachlor and lindane are mainly due to the regional background with little contribution from local soil residues. An analysis of modelled summer day and night average soil-air exchange fluxes shows that toxaphene and p,p'-DDE soil residues are strong sources of emission to the atmosphere during both the day and night while the chlordanes, trans-nonachlor, lindane and dieldrin are deposited from the atmosphere to the soil during the night hours and emitted to the atmosphere during the day time. This result illustrates the model's capability to simulate the processes that lead to the 'grasshopper' effect whereby persistent pesticides in soils can be transported in the atmosphere by successive periods of emission and deposition to terrestrial surfaces. In the second part to this paper, the model is used to study the trends of pesticide residues and air concentrations over a twenty year period. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据