4.5 Article

Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 209, 期 18, 页码 3529-3544

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.02419

关键词

NHE antiporter; midgut; Malpighian tubule; insect epithelia

类别

资金

  1. NIAID NIH HHS [AI48049, AI 32572] Funding Source: Medline

向作者/读者索取更多资源

Transport across insect epithelia is thought to depend on the activity of a vacuolar-type proton ATPase (V-ATPase) that energizes ion transport through a secondary proton/cation exchanger. Although several of the subunits of the V-ATPase have been cloned, the molecular identity of the exchanger has not been elucidated. Here, we present the identification of sodium/proton exchanger isoform 3 (NHE3) from yellow fever mosquito, Aedes aegypti (AeNHE3). AeNHE3 localizes to the basal plasma membrane of Malpighian tubule, midgut and the ion-transporting sector of gastric caeca. Midgut expression of NHE3 shows a different pattern of enrichment between larval and adult stages, implicating it in the maintenance of regional pH in the midgut during the life cycle. In all tissues examined, NHE3 predominantly localizes to the basal membrane. In addition the limited expression in intracellular vesicles in the median Malpighian tubules may reflect a potential functional versatility of NHE3 in a tissue-specific manner. The localization of V-ATPase and NHE3, and exclusion of Na+/K+-ATPase from the distal ion-transporting sector of caeca, indicate that the role of NHE3 in ion and pH regulation is intricately associated with functions of V-ATPase. The AeNHE3 complements yeast mutants deficient in yeast NHEs, NHA1 and NHX1. To further examine the functional property of AeNHE3, we expressed it in NHE-deficient fibroblast cells. AeNHE3 expressing cells were capable of recovering intracellular pH following an acid load. The recovery was independent of the large cytoplasmic region of AeNHE3, implying this domain to be dispensable for NHE3 ion transport function. Na-22(+) uptake studies indicated that AeNHE3 is relatively insensitive to amiloride and EIPA and is capable of Na+ transport in the absence of the cytoplasmic tail. Thus, the core domain containing the transmembrane regions of NHE3 is sufficient for pH recovery and ion transport. The present data facilitate refinement of the prevailing models of insect epithelial transport by incorporating basal amiloride-insensitive NHE3 as a critical mediator of transepithelial ion and fluid transport and likely in the maintenance of intracellular pH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据