4.7 Article Proceedings Paper

Capturing molecules with templated materials - Analysis and rational design of molecularly imprinted polymers

期刊

ANALYTICA CHIMICA ACTA
卷 578, 期 1, 页码 50-58

出版社

ELSEVIER
DOI: 10.1016/j.aca.2006.06.077

关键词

molecularly imprinted polymers (MIPs); biomolecular recognition; biomimetic receptors; protein recognition; synthetic enzymes; rational design; molecular modeling

向作者/读者索取更多资源

The creation of synthetic tailor-made receptors capable of recognizing desired molecular targets with high affinity and selectivity is a persistent long-term goal for researchers in the fields of chemical, biological, and pharmaceutical research. Compared to biomacromolecular receptors, these synthetic receptors promise simplified production and processing, less costs, and more robust receptor architectures. During recent decades, molecularly imprinted polymers (MIPs) are widely considered mimics of natural molecular receptors suitable for a diversity of applications ranging from biomimetic sensors, to separations and biocatalysis. A remaining challenge for the next generation of MIPs is the synthesis of deliberately designed and highly efficient receptor architectures suitable for recognizing biologically relevant molecules, for which natural receptors are either not prevalent, or difficult to isolate and utilize. Hence, this review discusses recent advances in synthetic receptor technology for biomolecules (e.g. drugs, amino acids, steroids, proteins, entire cells, etc.) via molecular imprinting techniques. Surface imprinting methods and epitope imprinting approaches have been introduced for protein recognition at imprinted surfaces. Imprinting techniques in aqueous solution or organic-water co-solvents have been introduced avoiding denaturation of biomolecules during MIP synthesis. In addition, improved bioreactivity of entire enzyme or active site mimics generated by molecular imprinting will be highlighted. Finally, the emerging importance of molecular modeling and molecular dynamics studies detailing the intermolecular interactions between the template species, the porogenic solvent molecules, and the involved monomer and cross-linker in the pre-polymerization solution will be addressed yielding a rational approach toward next-generation MIP technology. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据