4.7 Article

Interstellar turbulence driving by galactic spiral shocks

期刊

ASTROPHYSICAL JOURNAL
卷 649, 期 1, 页码 L13-L16

出版社

IOP PUBLISHING LTD
DOI: 10.1086/508160

关键词

galaxies : ISM; instabilities; ISM : kinematics and dynamics; methods : numerical MHD; turbulence

向作者/读者索取更多资源

Spiral shocks are potentially a major source of turbulence in the interstellar medium. To address this problem quantitatively, we use numerical simulations to investigate gas flow across spiral arms in vertically stratified, self-gravitating, magnetized models of galactic disks. Our models are isothermal, quasi-axisymmetric, and local in the quasi-radial direction while global in the vertical direction. We find that a stellar spiral potential perturbation promptly induces a spiral shock in the gas flow. For vertically stratified gas disks, the shock front in the radial-vertical plane is in general curved, and never achieves a steady state. This behavior is in sharp contrast to spiral shocks in two-dimensional (thin) disks, which are generally stationary. The nonsteady motions in our models include large-amplitude quasi-radial flapping of the shock front. This flapping feeds random gas motions on the scale of the vertical disk thickness, which then cascades to smaller scales. The induced gas velocity dispersion in quasi-steady state exceeds the sonic value for a range of shock strengths, suggesting that spiral shocks are indeed an important generator of turbulence in disk galaxies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据