4.7 Article

Vibrational dynamics of DNA. I. Vibrational basis modes and couplings

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 11, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2213257

关键词

-

向作者/读者索取更多资源

Carrying out density functional theory calculations of four DNA bases, base derivatives, Watson-Crick (WC) base pairs, and multiple-layer base pair stacks, we studied vibrational dynamics of delocalized modes with frequency ranging from 1400 to 1800 cm(-1). These modes have been found to be highly sensitive to structure fluctuation and base pair conformation of DNA. By identifying eight fundamental basis modes, it is shown that the normal modes of base pairs and multilayer base pair stacks can be described by linear combinations of these vibrational basis modes. By using the Hessian matrix reconstruction method, vibrational coupling constants between the basis modes are determined for WC base pairs and multilayer systems and are found to be most strongly affected by the hydrogen bonding interaction between bases. It is also found that the propeller twist and buckle motions do not strongly affect vibrational couplings and basis mode frequencies. Numerically simulated IR spectra of guanine-cytosine and adenine-thymine bases pairs as well as of multilayer base pair stacks are presented and described in terms of coupled basis modes. It turns out that, due to the small interlayer base-base vibrational interactions, the IR absorption spectrum of multilayer base pair system does not strongly depend on the number of base pairs. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据