4.8 Article

Topological defects and the superfluid transition of the s=1 spinor condensate in two dimensions

期刊

PHYSICAL REVIEW LETTERS
卷 97, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.120406

关键词

-

向作者/读者索取更多资源

The s=1 spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We analyze the topological defects of the polar condensate, correcting previous studies, and show that the polar condensate in two dimensions is unstable at any finite temperature; instead, there is a nematic or paired superfluid phase with algebraic order in exp(2i theta), where theta is the superfluid phase, and no magnetic order. The Kosterlitz-Thouless transition out of this phase is driven by unbinding of half-vortices (the spin-disordered version of the combined spin and phase defects found by Zhou), and the anomalous universal 8T(c)/pi stiffness jump at the transition is confirmed in numerical simulations. The anomalous stiffness jump is a clear experimental signature of this phase and the corresponding phase transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据