4.7 Article

Continuous mode transition and the effects of pressure gradient

期刊

JOURNAL OF FLUID MECHANICS
卷 563, 期 -, 页码 357-388

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112006001340

关键词

-

向作者/读者索取更多资源

Continuous mode transition is an instance of the bypass route to boundary-layer turbulence. The stages that precede breakdown are explained in terms of continuous Orr-Sommerfeld and Squire spectra. In that context, the role of pressure gradient is less evident than it is in natural transition. Its role is investigated using linear theory and numerical simulations. Both approaches demonstrate that adverse pressure gradients enhance the coupling of low-frequency vortical disturbances to the boundary-layer shear. The result is stronger boundary-layer perturbation jets - or Klebanoff distortions. The correlation between the intensity of the perturbation jets and transition location is tested by direct numerical simulations of pairwise continuous mode interactions; such interactions can reproduce the entire transition process. The results confirm that stronger perturbation jets are more unstable, and hence provoke early transition in adverse pressure gradient. This is also consistent with the experimental observation that transition becomes independent of pressure gradient at high turbulent intensities. Under such conditions, boundary-layer streaks are highly unstable and transition is achieved swiftly, independent of the mean gradient in pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据