4.7 Article

The mechanical response of pure iron at high strain rates under dominant shear

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.05.154

关键词

high strain rate; dominant shear; iron; martensitic phase transformation; dynamic recrystallization

向作者/读者索取更多资源

The mechanical behavior and microstructure of pure iron subjected to dominant shear loading has been characterized over a wide range of strain rates. Pure iron is found to be highly strain-rate sensitive. Iron exhibits marked strain softening at epsilon approximate to 8000 s(-1) - sigma approximate to 850 MPa that is unexpected for the annealed material, as characterized by TEM, but is identical to that of iron preshocked at 40 GPa [G.M. Weston, J., Mater. Sc. Lett. 11 (1992) 1361]. The microstructure is found to undergo significant refinement with increasing strain rate, from large initial grains (50 mu m), through dislocation cells and large twinning, and finally micro-twins and dynamically recrystallized 200 nm grains at the higher strain rates. In situ temperature measurements indicate the release of an external heat source, other that the thermomechanical conversion of plastic work, which is identified as dynamic recrystallization. The present results suggest the operation of the alpha (BCC) double left right arrow epsilon (HCP) phase transition that is known to occur during hydrostatic or shock loading at 13 GPa. The combination of the high strain-rate sensitivity and dominant shear loading conditions seem to trigger this phase transition, thus supporting recent work [K.J. Caspersen, A. Lew, M. Ortiz, M., E.A. Carter, Phys. Rev. Lett. 10 (2004) 115501] emphasizing the role of shear. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据