4.6 Article

ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide

期刊

LANGMUIR
卷 22, 期 20, 页码 8492-8500

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la061359p

关键词

-

向作者/读者索取更多资源

The contribution of various bacterial surface functional groups to adhesion at hematite and ZnSe surfaces was examined using attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. When live Shewanella oneidensis, Pseudomonas aeruginosa, and Bacillus subtilis cells were introduced to a horizontal hematite (alpha-Fe2O3)-coated internal reflection element (IRE), FTIR peaks emerged corresponding to bacterial phosphate group binding. These IR peaks were not observed when bacteria were introduced to the uncoated ZnSe IRE. When cells were added to colloidal suspensions of alpha-Fe2O3 at pH 7, spectra included peaks corresponding to P-OFe and nu(COOH), the latter being attributed to bridging of carboxylate at mineral surface OH groups. Selected model organic compounds with P-containing functionalities (phenylphosphonic acid [PPA], adenosine 5'-monophosphate [AMP], 2'-deoxyadenyl-(3'-> 5')-2'-deoxyadenosine [ DADA], and deoxyribonucleic acid [ DNA]) produce spectra with similar peaks corresponding to P-OFe when adsorbed to alpha-Fe2O3. The data indicate that both terminal phosphate/phosphonate and phosphodiester groups, either exuded from the cell or present as surface biomolecules, are involved in bacterial adhesion to Fe-oxides through formation of innersphere Fe-phosphate/phosphonate complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据