4.6 Article

A novel computational method to predict transcription factor DNA binding preference

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2006.07.149

关键词

transcription factor; transcription factor DNA binding preference; nearest neighbor algorithm; 0/1 system; jackknife cross-validation test; gene ontology

向作者/读者索取更多资源

Transcription factor binds to sequence specific sites in regulatory region to control nearby gene's expression. It is termed as the major regulator of transcription. However, identifying DNA binding preference of transcription factors systematically is still a challenge. By using the nearest neighbor algorithm, a novel computational approach was developed to predict transcription factor DNA binding preference based on the gene ontology [M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene Ontology: tool for the unification of biology, Nat. Genet. 25 (2000) 25-29.] and 0/1 encoding system of nucleotide. The overall success rate of Jackknife cross-validation test for our predictor reaches 76.6%, which indicates the DNA binding preference is closely correlated with its biological functions and computational method developed in this contribution could be a powerful tool to investigate transcription factor DNA binding preference, especially for those novel transcription factors with little prior knowledge on its DNA binding preference. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据