4.8 Article

Effects of platinum loading on performance of proton-exchange membrane fuel cells using surface-modified Nafion® membranes

期刊

JOURNAL OF POWER SOURCES
卷 160, 期 1, 页码 90-96

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2006.01.071

关键词

ion beam treatment; surface morphology; proton exchange membrane fuel cells; platinum catalyst loading; interface; membrane characterization

向作者/读者索取更多资源

The interface between the electrolyte and electrode catalyst plays an important role in determining the performance of proton-exchange membrane fuel cells (PEMFCs) since the electrochemical reactions take place at the interface in contact with the reactant gases. To enhance catalyst activity by enlarging the interfacial area, the surface of a Nafion membrane is roughened by Ar+ ion beam bombardment that does not change the chemical structure of the membrane, as confirmed by FT-IR spectra. Among the membranes treated with ion dose densities of 0, 10(15), 10(6), 5 x 10(16) and 10(17) ions cm(-2) at ion energy of 1 keV, the membrane treated at ion dose density of 5 x 10(16) ions cm(-2) exhibits the highest performance. Using the untreated and the treated membrane with 5 x 10(16) ions cm(-2), the effects of platinum loading on cell performance are examined with Pt loadings of 01, 0.2, 0.3, 0.4 and 0.55 mg cm(-2). Except for a Pt loading of 0.55 mg cm(-2) where mass transport limits the cell performance, the single cell using a treated membrane gives a higher performance than that using an untreated membrane. This implies that the cell performance can be improved and the Pt loading can be reduced by ion beam bombardment. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据