4.8 Article

Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels

期刊

BIOMATERIALS
卷 27, 期 7, 页码 1140-1151

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.07.020

关键词

hydrogel; interpenetrating polymer network; degradation; mechanical properties

资金

  1. NIBIB NIH HHS [EB00251] Funding Source: Medline

向作者/读者索取更多资源

Novel interpenetrating network (IPN) hydrogels, composed of pH-sensitive, aromatic azo group containing network as one component (Network A), and a hydrolyzable network as the other (Network B), were prepared by a sequential process. The first network was formed by crosslinking of a reactive polymer precursor (copolymer of NN-dimethylacrylamide, acrylic acid, N-tert.butylacrylamide, and N-methacryloylglycylglycine p-nitrophenyl ester) with an aromatic azo group containing diamine ((N, AP-epsilon-aminocaproyl)-4,4'-diaminoazobenzene). The second network was formed by radical crosslinking copolymerization of N-(2-hydroxypropyl)methacrylamide with N,O-dimethaeryloylhydroxylamine. The composition of the hydrogels was manipulated to determine the influence of hydrogel composition on the equilibrium degree of swelling, modulus of elasticity in compression, and on the rate of degradation of Network B. Modeling of network structure was accomplished using the statistical branching theory. The major advantage of IPN hydrogels, when compared to traditional pH-sensitive networks, is the linear swelling profile following abrupt change of pH from 2 to 7.4. This indicates the suitability of IPN as carriers for oral drug delivery. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据