4.6 Article

Competitive displacement of phosphoinositide 3-kinase from β-adrenergic receptor kinase-1 improves postinfarction adverse myocardial remodeling

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01199.2005

关键词

heart failure; ventricular remodeling; transgenic models

向作者/读者索取更多资源

Adverse remodeling after myocardial infarction (MI) determines the progression of heart failure. Failing hearts are characterized by downregulation of beta-adrenergic receptor (beta-AR) signaling in part because of increased beta-AR kinase 1 activity. Our previous studies have shown that overexpression of the phosphoinositide kinase (PIK) domain of phosphoinositide 3-kinase (PI3K), prevents beta-AR downregulation and enhances adrenergic agonist responsiveness by inhibiting the targeting of PI3K to the beta-AR complex. To investigate whether preventing beta-AR downregulation in the heart ameliorates cardiac function post-MI, transgenic mice with cardiac-specific overexpression of the PIK domain peptide (TgPIK) underwent left coronary artery ligation and were subsequently followed by serial echocardiography at 4, 8, 12, 16, and 20 wk. Despite having similar infarction sizes, TgPIK mice showed better systolic function, less cardiac dilatation, and improved hemodynamic response to dobutamine compared with littermate controls after MI. To test that displacement of PI3K from the beta-AR complex, but not the total loss of PI3K-gamma, is critical for amelioration of cardiac function, mice lacking the PI3K-gamma (PI3K-gamma-KO) underwent MI, and their cardiac function was assessed 20 wk post-MI. Serial echocardiographic measurements showed severe reduction in contractile performance in PI3K-gamma-KO compared with TgPIK mice. Furthermore, significant beta-AR downregulation and desensitization were only seen in infarcted wild-type and PI3K-gamma-KO mice and not in TgPIK mice. Together, these results demonstrate that adverse remodeling of the ventricle after MI can be attenuated by a strategy that prevents recruitment of PI3K to the plasma membrane and restores normal beta-AR function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据