4.6 Article

Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture

期刊

ANNALS OF BOTANY
卷 109, 期 6, 页码 1091-1100

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcs030

关键词

Alpine tundra; climate change; drought stress; functional anatomy; herb-chronology; hydraulic conductivity; intervascular xylem; phenotypic plasticity; Potentilla diversifolia; specific leaf area; starch; vessel size

资金

  1. National Science Foundation [NSF DEB 0423662, PBEZA-117266]

向作者/读者索取更多资源

Plasticity in structural and functional traits related to water balance may determine plant performance and survival in ecosystems characterized by water limitation or high levels of rainfall variability, particularly in perennial herbaceous species with long generation cycles. This paper addresses whether and the extent to which several such seasonal to long-term traits respond to changes in moisture availability. Using a novel approach that integrates ecology, physiology and anatomy, a comparison was made of lifetime functional traits in the root xylem of a long-lived perennial herb (Potentilla diversifolia, Rosaceae) growing in dry habitats with those of nearby individuals growing where soil moisture had been supplemented for 14 years. Traditional parameters such as specific leaf area (SLA) and above-ground growth were also assessed. Individuals from the site receiving supplemental moisture consistently showed significant responses in all considered traits related to water balance: SLA was greater by 24 ; roots developed 19 less starch storing tissue, an indicator for drought-stress tolerance; and vessel size distributions shifted towards wider elements that collectively conducted water 54 more efficiently but only during the years for which moisture was supplemented. In contrast, above-ground growth parameters showed insignificant or inconsistent responses. The phenotypic changes documented represent consistent, dynamic responses to increased moisture availability that should increase plant competitive ability. The functional plasticity of xylem anatomy quantified in this study constitutes a mechanistic basis for anticipating the differential success of plant species in response to climate variability and change, particularly where water limitation occurs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据