4.6 Article

Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency

期刊

ANNALS OF BOTANY
卷 110, 期 3, 页码 681-688

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcs126

关键词

Brassinosteroids; iron deficiency; cucumber; Cucumis sativus; ferric reductase activity; Fe translocation

资金

  1. National Science Foundation of China [31101594]
  2. National High Technology and Research Development Program of P. R. China [2007AA091705]

向作者/读者索取更多资源

Brassinosteroids (BR) are a class of plant polyhydroxysteroids with diverse functions in plant growth and development. However, there is little information on the role of BRs played in the response to nutrient deficiency. To evaluate the role of BR in the response of plants to iron (Fe) deficiency, the effect of 24-epibrassinolide (EBR) on ferric reductase (FRO) activity, acidification of the rhizosphere and Fe content in cucumber (Cucumis sativus) seedlings under Fe-deficient (1 m FeEDTA) and Fe-sufficient (50 m FeEDTA) conditions were investigated. There was a significant increase in FRO activity upon exposure of cucumber seedlings to an Fe-deficient medium, and the Fe deficiency-induced increase in FRO activity was substantially suppressed by EBR. In contrast, application of EBR to Fe-sufficient seedlings stimulated FRO activity. Ethylene production evoked by Fe deficiency was suppressed by EBR, while EBR induced ethylene production from Fe-sufficient seedlings. Fe contents in shoots were reduced by treatment with EBR, while Fe contents in roots were markedly increased under both Fe-deficient and Fe-sufficient conditions. The reductions in Fe contents of shoots were independent of chlorophyll (CHL) contents under Fe-sufficient conditions, but they were positively correlated with CHL contents under Fe-deficient conditions. At the transcriptional level, transcripts encoding FRO (CsFRO1) and Fe transporter (CsIRT1) were increased upon exposure to the Fe-deficient medium, and the increases in transcripts were reversed by EBR. The results demonstrate that BRs are likely to play a negative role in regulating Fe-deficiency-induced FRO, expressions of CsFRO1 and CsIRT1, as well as Fe translocation from roots to shoots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据