4.7 Article

Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus

期刊

DEVELOPMENT
卷 133, 期 19, 页码 3847-3857

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.02557

关键词

bHLH transcription factor; GABAergic neurons; Gad65 (Gad2); Gad67 (Gad1); megane ( heslike, helt); superior colliculus; midbrain; specification; mouse

向作者/读者索取更多资源

The mouse Mgn protein (Helt) is structurally related to the neurogenic Drosophila hairy and Enhancer of split [h/E(spl)] proteins, but its unique structural properties distinguish it from other members of the family. Mgn expression shows a spatiotemporal correlation with GABAergic markers in several brain regions. We report here that homozygous Mgn-null mice die between the second and the fifth postnatal week of age, and show a complete depletion of Gad65 and Gad67 expression in the superior colliculus and a reduction in the inferior colliculus. Other brain regions, as well as other neural systems, are not affected. The progenitor GABAergic cells appear to be generated in right numbers but fail to become GABAergic neurons. The phenotype of the mice is consistent with reduced GABAergic activity. Thus, our in vivo study provides evidence that Mgn is the key regulator of GABAergic neurons, controlling their specification in the dorsal midbrain. Another conclusion from our results is that the function of Mgn shows a previously unrecognized role for h/E(spl)-related transcription factors in the dorsal midbrain GABAergic cell differentiation. Vertebrate h/E(spl)-related genes can no longer be regarded solely as a factors that confer generic neurogenic properties, but as key components for the subtype-neuronal identity in the mammalian CNS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据