4.6 Article

Comparative studies of thermotolerance: different modes of heat acclimation between tolerant and intolerant aquatic plants of the genus Potamogeton

期刊

ANNALS OF BOTANY
卷 109, 期 2, 页码 443-452

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcr300

关键词

Acquired thermotolerance; chloroplast-localized small heat shock protein (CP-sHSP); gene duplication; heat stress; heat acclimation; heterophylly; geographical distribution; heat shock transcription factor A2 (HSFA2); minimum threshold temperature; pondweed; Potamogeton

向作者/读者索取更多资源

Background and Aims Molecular-based studies of thermotolerance have rarely been performed on wild plants, although this trait is critical for summer survival. Here, we focused on thermotolerance and expression of heat shock transcription factor A2 (HSFA2) and its putative target gene (chloroplast-localized small heat shock protein, CP-sHSP) in two allied aquatic species of the genus Potamogeton (pondweeds) that differ in survival on land. Methods The degree of thermotolerance was examined using a chlorophyll bioassay to assess heat injury in plants cultivated under non-and heat-acclimation conditions. Potamogeton HSFA2 and CP-sHSP genes were identified and their heat-induction was quantified by real-time PCR. Key Results The inhibition of chlorophyll accumulation after heat stress showed that Potamogeton malaianus had a higher basal thermotolerance and developed acquired thermotolerance, whereas Potamogeton perfoliatus was heat sensitive and unable to acquire thermotolerance. We found two duplicated HSFA2 and CP-sHSP genes in each species. These genes were induced by heat shock in P. malaianus, while one HSFA2a gene was not induced in P. perfoliatus. In non-heat-acclimated plants, transcript levels of HSFA2 and CP-sHSP were transiently elevated after heat shock. In heat-acclimated plants, transcripts were continuously induced during sublethal heat shock in P. malaianus, but not in P. perfoliatus. Instead, the minimum threshold temperature for heat induction of the CP-sHSP genes was elevated in P. perfoliatus. Conclusions Our comparative study of thermotolerance showed that heat acclimation leads to species-specific changes in heat response. The development of acquired thermotolerance is beneficial for survival at extreme temperatures. However, the loss of acquired thermotolerance and plasticity in the minimum threshold temperature of heat response may be favourable for plants growing in moderate habitats with limited daily and seasonal temperature fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据