4.8 Article

Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii

期刊

PLANT JOURNAL
卷 48, 期 1, 页码 1-16

出版社

WILEY
DOI: 10.1111/j.1365-313X.2006.02852.x

关键词

Chlamydomonas reinhardtii; phototropin; gene expression; chlorophyll; carotenoid; blue light

向作者/读者索取更多资源

Phototropin ( PHOT) is a photoreceptor involved in a variety of blue- light- elicited physiological processes including phototropism, chloroplast movement and stomatal opening in plants. The work presented here tests whether PHOT is involved in expression of light- regulated genes in Chlamydomonas reinhardtii. When C. reinhardtii was transferred from the dark to very low- fluence rate white light, there was a substantial increase in the level of transcripts encoding glutamate- 1- semialdehyde aminotransferase ( GSAT), phytoene desaturase ( PDS) and light- harvesting polypeptides ( e. g. LHCBM6). Increased levels of these transcripts were also elicited by low- intensity blue light, and this blue- light stimulation was suppressed in three different RNAi strains that synthesize low levels of PHOT. The levels of GSAT and LHCBM6 transcripts also increased following exposure of algal cells to low- intensity red light ( RL). The red- light- dependent increase in transcript abundance was not affected by the electron transport inhibitor 3-( 3,4- dichlorophenyl)- 1,1- dimethylurea, implying that the influence of RL on transcript accumulation was not controlled by cytoplasmic redox conditions, and that a red- light photoreceptor( s) may be involved in regulating the levels of transcripts from specific photosynthesis- related genes in C. reinhardtii. Interestingly, elevated GSAT and LHCBM6 transcript levels in RL were significantly reduced in the PHOT RNAi strains, which raises the possibility of co- action between blue and RL signaling pathways. Microarray experiments indicated that the levels of several transcripts for photosystem ( PS) I and II polypeptides were also modulated by PHOT. These data suggest that, in C. reinhardtii, ( i) PHOT is involved in blue- light- mediated changes in transcript accumulation, ( ii) synchronization of the synthesis of chlorophylls ( Chl), carotenoids, Chl- binding proteins and other components of the photosynthetic apparatus is achieved, at least in part, through PHOT- mediated signaling, and ( iii) a red- light photoreceptor can also influence levels of certain transcripts associated with photosynthetic function, although its action requires normal levels of PHOT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据