4.6 Article

Genetic analysis of potassium use efficiency in Brassica oleracea

期刊

ANNALS OF BOTANY
卷 105, 期 7, 页码 1199-1210

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcp253

关键词

Arabidopsis; Brassica oleracea; genetics; potassium (K); potassium use efficiency (KUE); quantitative trait loci (QTL); shoot

资金

  1. UK Biotechnology and Biological Sciences Research Council
  2. UK Department for Environment, Food and Rural Affairs
  3. Scottish Government Rural and Environment Research and Analysis Directorate

向作者/读者索取更多资源

Potassium (K) fertilizers are used in intensive and extensive agricultural systems to maximize production. However, there are both financial and environmental costs to K-fertilization. It is therefore important to optimize the efficiency with which K-fertilizers are used. Cultivating crops that acquire and/or utilize K more effectively can reduce the use of K-fertilizers. The aim of the present study was to determine the genetic factors affecting K utilization efficiency (KUtE), defined as the reciprocal of shoot K concentration (1/[K](shoot)), and K acquisition efficiency (KUpE), defined as shoot K content, in Brassica oleracea. Genetic variation in [K](shoot) was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with [K](shoot) and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse. More than two-fold variation in [K](shoot) was observed among DFS accessions grown in the glasshouse, a significant proportion of which could be attributed to genetic factors. Several QTL associated with [K](shoot) were identified, which, despite a significant correlation in [K](shoot) among genotypes grown in the glasshouse and field, differed between these two environments. A QTL associated with [K](shoot) in glasshouse-grown plants (chromosome C7 at 62 center dot 2 cM) was confirmed using substitution lines. This QTL corresponds to a segment of arabidopsis chromosome 4 containing genes encoding the K(+) transporters AtKUP9, AtAKT2, AtKAT2 and AtTPK3. There is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据