4.7 Article

First-principles derivation of density-functional formalism for quenched-annealed systems

期刊

PHYSICAL REVIEW E
卷 74, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.74.041502

关键词

-

向作者/读者索取更多资源

We derive from first principles (without resorting to the replica trick) a density-functional theory for fluids in quenched disordered matrices (QA-DFT). We show that the disorder-averaged free energy of the fluid is a functional of the average density profile of the fluid as well as the pair correlation of the fluid and matrix particles. For practical reasons it is preferable to use another functional: the disorder-averaged free energy plus the fluid-matrix interaction energy, which, for fixed fluid-matrix interaction potential, is a functional only of the average density profile of the fluid. When the matrix is created as a quenched configuration of another fluid, the functional can be regarded as depending on the density profile of the matrix fluid as well. In this situation, the replica Ornstein-Zernike equations which do not contain the blocking parts of the correlations can be obtained as functional identities in this formalism, provided the second derivative of this functional is interpreted as the connected part of the direct correlation function. The blocking correlations are totally absent from QA-DFT, but nevertheless the thermodynamics can be entirely obtained from the functional. We apply the formalism to obtain the exact functional for an ideal fluid in an arbitrary matrix, and discuss possible approximations for nonideal fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据