4.5 Article

BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodirner

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 26, 期 19, 页码 7318-7330

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00337-06

关键词

-

向作者/读者索取更多资源

CLOCK and BMAL1 are bHLH-PAS-containing transcription factors that bind to E-box elements and are indispensable for expression of core circadian clock components such as the Per and Cry genes. A key step in expression is the heterodimerization of CLOCK and BMAL1 and their accumulation in the nucleus with an approximately 24-h periodicity. We show here that nucleocytoplasmic shuttling of BMAL1 is essential for transactivation and for degradation of the CLOCK/BMAL1 heterodimer. Using serial deletions and point mutants, we identified a functional nuclear localization signal and Crm1-dependent nuclear export signals in BMAL1 Transient-transfection experiments revealed that heterodimerization of CLOCK and BMAL1 accelerates their turnover, as well as E-box-dependent clock gene transcription. Moreover, in embryonic mouse fibroblasts, robust transcription of Per2 is tightly associated with massive degradation of the CLOCK/BMAL1 heterodimer. CRY proteins suppressed this process during the transcription-negative phase and led to nuclear accumulation of the CLOCK/BMAL1 heterodimer. Thus, these findings suggest that the decrease of BMAL1 abundance during the circadian cycle reflects robust transcriptional activation of clock genes rather than inhibition of BMAL1 synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据