4.5 Article

Brain Injury Prediction: Assessing the Combined Probability of Concussion Using Linear and Rotational Head Acceleration

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 41, 期 5, 页码 873-882

出版社

SPRINGER
DOI: 10.1007/s10439-012-0731-0

关键词

Mild traumatic brain injury; Biomechanics; Football; Helmet; Angular; Risk curve

资金

  1. National Highway Traffic Safety Administration
  2. National Institutes of Health (National Institute for Child Health and Human Development) [R01HD048638]

向作者/读者索取更多资源

Recent research has suggested possible long term effects due to repetitive concussions, highlighting the importance of developing methods to accurately quantify concussion risk. This study introduces a new injury metric, the combined probability of concussion, which computes the overall risk of concussion based on the peak linear and rotational accelerations experienced by the head during impact. The combined probability of concussion is unique in that it determines the likelihood of sustaining a concussion for a given impact, regardless of whether the injury would be reported or not. The risk curve was derived from data collected from instrumented football players (63,011 impacts including 37 concussions), which was adjusted to account for the underreporting of concussion. The predictive capability of this new metric is compared to that of single biomechanical parameters. The capabilities of these parameters to accurately predict concussion incidence were evaluated using two separate datasets: the Head Impact Telemetry System (HITS) data and National Football League (NFL) data collected from impact reconstructions using dummies (58 impacts including 25 concussions). Receiver operating characteristic curves were generated, and all parameters were significantly better at predicting injury than random guessing. The combined probability of concussion had the greatest area under the curve for all datasets. In the HITS dataset, the combined probability of concussion and linear acceleration were significantly better predictors of concussion than rotational acceleration alone, but not different from each other. In the NFL dataset, there were no significant differences between parameters. The combined probability of concussion is a valuable method to assess concussion risk in a laboratory setting for evaluating product safety.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据