4.7 Article

Dendron-protected Au nanoparticles - Effect of dendritic structure on chemical stability

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 302, 期 1, 页码 178-186

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2006.05.064

关键词

dendrimers; kinetics; nanoparticles; stability; structure-activity relationships; UV-vis spectroscopy

向作者/读者索取更多资源

A series of gold nanoparticles stabilised by 'Newkome-type' dendritic branching has been synthesised and fully characterised. In particular, the properties and behaviour of these hybrid materials are compared with those of a previously reported set of nanoparticles stabilised by dendrons constructed using L-lysine building blocks. The rates of cyanide-induced nanoparticle decomposition were determined, and it was found that the rate of decomposition increased on the introduction of dendritic branching. Furthermore, 'Newkome-type' dendrons were significantly more effective at protecting the encapsulated gold nanoparticle than the L-lysine based dendrons. It is proposed that this observation can be explained on the basis of more effective packing and surface coverage by the 'Newkome-type' dendrons. Importantly, this study therefore demonstrates that the organic chemical structure of dendritic ligands plays a crucial role in controlling the reactivity of self-assembled hybrid nanostructures. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据