4.5 Article

Shear localization due to liquefaction-induced void redistribution in a layered infinite slope

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0241(2006)132:10(1293)

关键词

-

向作者/读者索取更多资源

A new approach for estimating the susceptibility of a layered, liquefiable, infinite slope to shear deformations associated with void redistribution is presented. The excess pore water pressures associated with liquefaction produce upward seepage within the slope. The lower portion of a liquefied layer expels a certain volume of pore water, V-con, as it contracts (densifies). If the liquefied layer is overlain by a lower permeability soil, then the pore water expelled from the lower contracting zones can become trapped causing void ratio increase in a dilating sublayer near the interface, reducing its undrained shear strength. The volume of water that can be absorbed by the dilating sublayer prior to slope instability is termed the dilation capacity, V-dil. The ratio V-con/Y-dil is a measure of the potential for localization due to strength losses from void redistribution. The localization potential is shown to strongly depend on relative density, slope angle, and thickness of the liquefiable layer. The thickness of the dilating sublayer, a critical parameter, is significantly greater than the thickness of a shear band (which may be only tens of grain diameters). A detailed example is presented to show how the procedure can be applied. The results of the analysis are shown to be consistent with observed deformations and localizations in centrifuge model tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据