4.5 Article

The Effects of Gender, Level of Co-Contraction, and Initial Angle on Elbow Extensor Muscle Stiffness and Damping Under a Step Increase in Elbow Flexion Moment

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 39, 期 10, 页码 2542-2549

出版社

SPRINGER
DOI: 10.1007/s10439-011-0308-3

关键词

Elbow; Buckling; Fall; Stiffness; Gender; Co-contraction

资金

  1. PHS [P30 AG 024824]

向作者/读者索取更多资源

Flexion buckling of an arm under the large ground reaction loads associated with arresting a fall to the ground increases the risk for head and thorax injuries. Yet, the factors that determine the arm buckling load remain poorly understood. We tested the hypothesis in 18 healthy young adults that neither gender, triceps co-contraction level (i.e., 25, 50, or 75% MVC) nor elbow angle would affect the rotational stiffness and damping resistance to step changes in elbow flexion loading. Data on the step response were gathered using optoelectronic markers (150 Hz) and myoelectric activity measurements (2 kHz), and an inverse dynamics analysis was used to estimate elbow extensor stiffness and damping coefficients. A repeated-measures analysis of variance showed that gender (p = 0.032), elbow flexion angle and co-contraction level (both p < 0.001) affected stiffness, but only the latter affected the damping coefficient (p = 0.035). At 25 degrees of initial elbow flexion angle and maximum co-contraction, female stiffness and damping coefficients were 18 and 30% less, respectively, than male values after normalization by body height and weight. We conclude that the maximum extensor rotational stiffness and damping at the elbow is lower in women than in men of the same body size, and varies with triceps co-contraction level and initial elbow angle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据