4.7 Article

Distinct patterns of evolution between respiratory syncytial virus subgroups A and B from New Zealand isolates collected over thirty-seven years

期刊

JOURNAL OF MEDICAL VIROLOGY
卷 78, 期 10, 页码 1354-1364

出版社

WILEY-LISS
DOI: 10.1002/jmv.20702

关键词

molecular evolution; attachment glycoprotein; genotype; mutation rate

类别

向作者/读者索取更多资源

Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract infections in infants and children worldwide. In New Zealand, infants with RSV disease are hospitalized at a higher rate than other industrialized countries, without a proportionate increase in known risk factors. The molecular epidemiology of RSV in New Zealand has never been described. Therefore, we analyzed viral attachment glycoprotein (G) gene sequences from 106 RSV subgroup A isolates collected in New Zealand between 1967 and 2003, and 38 subgroup B viruses collected between 1984 and 2004. Subgroup A and B sequences were aligned separately, and compared to sequences of viruses isolated from other countries during a similar period. Genotyping and clustering analyses showed RSV in New Zealand is similar and temporally related to viruses found in other countries. By quantifying temporal clustering, we found subgroup B viruses clustered more strongly than subgroup A viruses. RSV B sequences displayed more variability in stop codon usage and predicted protein length, and had a higher degree of predicted O-glycosylation site changes than RSV A. The mutation rate calculated for the RSV B G gene was significantly higher than for RSV A. Together, these data reveal that RSV subgroups exhibit different patterns of evolution, with subgroup B viruses evolving faster than A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据