4.1 Article Proceedings Paper

Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts

期刊

RUSSIAN JOURNAL OF ELECTROCHEMISTRY
卷 42, 期 10, 页码 1134-1140

出版社

PLEIADES PUBLISHING INC
DOI: 10.1134/S1023193506100223

关键词

iridium and tin oxides; hydrogen evolution electrocatalysts; nanocrystalline particles

向作者/读者索取更多资源

Iridium-based oxides are highly active as oxygen evolving electrocatalysts in PEM water electrolyzers. In this work XRD reveals that Ir-Sn oxides contain a single rutile phase with lattice parameters between those of pure IrO2 and SnO2. Addition of Ru leads to the synthesis of a core-shell type material due to the strong agglomeration of Ru colloids during the preparation procedure. The shell of this material consists of an Ir-Sn-Ru oxide deficient in Ru relative to the bulk. This leads to a decrease in the surface noble metal concentration (as found by XPS), which in turn results in a significant reduction in electrochemically active surface area. Polarization analysis indicates that the addition of Ru can influence the rate-determining step or mechanism by which oxygen is evolved. In a PEM water electrolysis cell, small additions of Sn do not significantly reduce the operating performance, however larger additions cause a performance loss due to a reduction in active surface area and increased ohmic resistance. When a pure IrO2 anode is used, a cell voltage is 1.61 V at 1 A cm(-2) and 90 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据