4.5 Article

Development of FRET Assay into Quantitative and High-throughput Screening Technology Platforms for Protein-Protein Interactions

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 39, 期 4, 页码 1224-1234

出版社

SPRINGER
DOI: 10.1007/s10439-010-0225-x

关键词

SUMOylation; Forster resonance energy transfer; K-d affinity determination; High-throughput screening

资金

  1. National Institutes of Health [AI076504]

向作者/读者索取更多资源

Forster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research and is a very powerful tool in elucidating protein interactions in many cellular processes. Ubiquitination and SUMOylation are multi-step cascade reactions, involving multiple enzymes and protein-protein interactions. Here we report the development of dissociation constant (K (d)) determination for protein-protein interaction and cell-based high-throughput screening (HTS) assay in SUMOylation cascade using FRET technology. These developments are based on steady state and high efficiency of fluorescent energy transfer between CyPet and YPet fused with SUMO1 and Ubc9, respectively. The developments in theoretical and experimental procedures for protein interaction K (d) determination and cell-based HTS provide novel tools in affinity measurement and protein interaction inhibitor screening. The K (d) determined by FRET between SUMO1 and Ubc9 is compatible with those determined with other traditional approaches, such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). The FRET-based HTS is pioneer in cell-based HTS. Both K (d) determination and cell-based HTS, carried out in 384-well plate format, provide powerful tools for large-scale and high-throughput applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据