4.6 Article

Dissociation dynamics of resonantly coupled Bose-Fermi mixtures in an optical lattice

期刊

PHYSICAL REVIEW A
卷 74, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.74.043615

关键词

-

向作者/读者索取更多资源

We consider the photodissociation of ground-state bosonic molecules trapped in an optical lattice potential into a two-component gas of fermionic atoms. The system is assumed to be described by a single-band resonantly coupled Bose-Fermi Hubbard model. We show that in the strong fermion-fermion interaction limit the dissociation dynamics is governed by a spin-boson lattice Hamiltonian. In the framework of a mean-field analysis based on a generalized Gutzwiller ansatz, we then examine the crossover of the dissociation from a regime of independent single-site dynamics to a regime of cooperative dynamics as the molecular tunneling increases. We also show that in the limits of weak and strong intersite tunneling the mean-field solutions agree well with the results from the quantum optical Jaynes-Cummings and Tavis-Cummings models, respectively. Finally, we identify two types of self-trapping transitions, a coherent and an incoherent one, depending on the ratio of the repulsive molecule-molecule interaction strength to molecular tunneling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据